If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2+34y-133=0
a = 7; b = 34; c = -133;
Δ = b2-4ac
Δ = 342-4·7·(-133)
Δ = 4880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4880}=\sqrt{16*305}=\sqrt{16}*\sqrt{305}=4\sqrt{305}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-4\sqrt{305}}{2*7}=\frac{-34-4\sqrt{305}}{14} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+4\sqrt{305}}{2*7}=\frac{-34+4\sqrt{305}}{14} $
| -20+p=-6p-5(7p+4) | | 17-x=1/3X15 | | 8^2x(2)=32(8^x)(2^x) | | 3(1-2m)+7(7m+6)=6m-8m | | A÷d=99 | | 2(-4)+3y=6 | | 12a^2-8a-8=0 | | 5(2x+8)=81 | | X÷y=99 | | 8/11=x/6+x | | 2(4)+3y=6 | | b-(-9)=20 | | -5x-109=201-15x | | 9m-2-24+16=0 | | X3-5x2-10x=-8 | | n-50=50 | | 8(n-6)+2n=-13+5n | | 53x42=0 | | 0.4(7+0.5×4)+1/2=x | | 4(3x-7)=21 | | 0.4(7+0.5×4)+1/2=m | | 2m+3(m+1)=4(m+3) | | 5+23+x=23 | | 1.32x=25.6 | | 4(x-7)=21 | | 60x+(1-x)240=240 | | 9x-7=5(x+) | | 9+s=72 | | 3.2=(t/8) | | 13=y/5 | | 5-1x=13 | | 18=b+3 |